

Team 4611
Code Standards

A Broad Guideline to Ozone’s Code

“Commit Early, Commit Often”

ㅡ

Robot

We use what is called an iterative robot. It follows the structure as

follows...

robotInit() -- provide for initialization at robot power-on

init() functions -- each of the following functions is called once when the

appropriate mode is entered:

● DisabledInit() -- called only when first disabled

● AutonomousInit() -- called each and every time autonomous is

entered from another mode

● TeleopInit() -- called each and every time teleop is entered from

another mode

● TestInit() -- called each and every time test mode is entered

from another mode

Periodic() functions -- each of these functions is called iteratively at the

appropriate periodic rate (aka the "slow loop"). The period of the

iterative robot is synced to the driver station control packets, giving a

periodic frequency of about 50Hz (50 times per second).

● disabledPeriodic()

● autonomousPeriodic()

● teleopPeriodic()

● testPeriodoc()

ㅡ

OI

OI is where we set up our player input for the robot. This can include

Xbox controllers, joysticks, button boxes, and more.

It is also were commands are bound to buttons.

ㅡ

Command

A command is something you actually want the robot to do. Something
like “SpinUpShooter” or “CloseGearGadget. ” The command flow goes
as follows. (Figure 1.)

Commands can be put into different types of groups including
parallelCommandGroups and sequentialCommandGroups. These
groups can contain any number of commands. In a
parallelCommandGroup, all of the commands will run at once, in a
sequential one, they run one after another. There are other types of
commands too.

https://docs.wpilib.org/en/stable/docs/software/commandbased/command-groups.html

A command group can be treated just like a normal command, it can be
scheduled, and even nested into other command groups.

ㅡ

Subsystem

A subsystem is an actual mechanism. This is where you reference the
objects you want to use and tell them what to do with your own

methods. Some Subsystems that we’ve had in the past include,
“Drivetrain”, “BallDelivery”, and “intake”.

ㅡ

Git

GitHub is like the cloud, for sharing code. It’s Google Docs, but for

code. GitHub allows multiple people to collaborate on one project.

When we want to work on a new feature for the robot, we pull out a

branch of the code to work on. This means that we are working on

separate code than everybody else. This helps prevent us from

breaking other people's code. Once the feature is complete and tested,

it can get merged back together with the rest of the code.

Working Tree/Workspace: On your local computer stored on

your text editor

Staging Area: A temporary storage place for your changes

Local Repo: More permanent storage place for your local

changes. These are things that you know work and are

committed to keeping.

Remote Repo: This is where you place your files you are

absolutely committed to and want to be available to others.

These are not local changes.

Add: Moves files from workspace to staging area

Commit: Moves files from staging to local repo

Commit -am: Moves files from workspace straight to local repo.

Adds a message to this commit. Should be descriptive.

Push: Moves files from local repo to remote repo

Pull: Pulls files from remote repo to local repo

Master: The cleanest branch of files. All code in here must work

and is the main source for code

Branch: You “branch” from master creating a second remote

repo that lies next to master but pushing to this branch will not

affect master

Merge: When you move your changes from one branch to

another branch (or master)

A quick how to with getting code into Eclipse:

1) To import programs: file, import

2) Clone URI

3) Paste repository URL (found on github)

4) Import

5) **Put program file, for example Stronghold2016 into workspace

for easy access

https://education.github.com/git-cheat-sheet-education.pdf

Figure 1. Command Flow

https://education.github.com/git-cheat-sheet-education.pdf

Figure 2. Example Command

Figure 3. Example Subsystem

Figure 4. Git Commands and Flow

	Figure 1. Command Flow

