Team 4611
Code Standards

Robot

ol

Command

A Broad Guideline to Ozone’s Code

“Commit Early, Commit Often”

We use what is called an iterative robot. It follows the structure as
follows...

robotlnit() -- provide for initialization at robot power-on

init() functions -- each of the following functions is called once when the
appropriate mode is entered:

DisabledInit() -- called only when first disabled
Autonomousinit() -- called each and every time autonomous is
entered from another mode

e Teleoplnit() -- called each and every time teleop is entered from
another mode

e Testlnit() -- called each and every time test mode is entered
from another mode

Periodic() functions -- each of these functions is called iteratively at the
appropriate periodic rate (aka the "slow loop"). The period of the
iterative robot is synced to the driver station control packets, giving a
periodic frequency of about 50Hz (50 times per second).

disabledPeriodic()
autonomousPeriodic()
teleopPeriodic()
testPeriodoc()

Ol is where we set up our player input for the robot. This can include
Xbox controllers, joysticks, button boxes, and more.

It is also were commands are bound to buttons.

A command is something you actually want the robot to do. Something
like “SpinUpShooter” or “CloseGearGadget. ” The command flow goes
as follows. (Figure 1.)

Commands can be put into different types of groups including
parallelCommandGroups and sequentialCommandGroups. These
groups can contain any number of commands. In a
parallelCommandGroup, all of the commands will run at once, in a
sequential one, they run one after another. There are other types of
commands too.

https://docs.wpilib.org/en/stable/docs/software/commandbased/command-groups.html

Subsystem

Git

A command group can be treated just like a normal command, it can be
scheduled, and even nested into other command groups.

A subsystem is an actual mechanism. This is where you reference the
objects you want to use and tell them what to do with your own
methods. Some Subsystems that we've had in the past include,
“Drivetrain”, “BallDelivery”, and “intake”.

GitHub is like the cloud, for sharing code. It's Google Docs, but for
code. GitHub allows multiple people to collaborate on one project.
When we want to work on a new feature for the robot, we pull out a
branch of the code to work on. This means that we are working on
separate code than everybody else. This helps prevent us from
breaking other people's code. Once the feature is complete and tested,
it can get merged back together with the rest of the code.

Working Tree/Workspace: On your local computer stored on
your text editor

Staging Area: A temporary storage place for your changes
Local Repo: More permanent storage place for your local
changes. These are things that you know work and are
committed to keeping.

Remote Repo: This is where you place your files you are
absolutely committed to and want to be available to others.
These are not local changes.

Add: Moves files from workspace to staging area

Commit: Moves files from staging to local repo

Commit -am: Moves files from workspace straight to local repo.
Adds a message to this commit. Should be descriptive.

Push: Moves files from local repo to remote repo

Pull: Pulls files from remote repo to local repo

Master: The cleanest branch of files. All code in here must work
and is the main source for code

Branch: You “branch” from master creating a second remote
repo that lies next to master but pushing to this branch will not
affect master

Merge: When you move your changes from one branch to
another branch (or master)

A quick how to with getting code into Eclipse:
1) To import programs: file, import
2) Clone URI
3) Paste repository URL (found on github)
4) Import

5) **Put program file, for example Stronghold2016 into workspace
for easy access

https://education.github.com/qgit-cheat-sheet-education.pdf

Figure 1. Command Flow

https://education.github.com/git-cheat-sheet-education.pdf

Initialize: Runs every time
the command starts

Execute: Runs every
20 miliseconds. Main
method for code.

IsFinished: Asks wether
or not the command

has finished

l true
End: Runs when the Interrupted: Runs when
command ends the command does not
peacefully end peacfully

Figure 2. Example Command

7 public class TankDrive extends Command{ A . :
3 Says this class is going to be a command
public TankDrive(){
this.requires(Robot.tankDrive); //This command uses this subsystem
} 3 . 2
‘\Asks what subsystem will be running this command
protected void execute() { //execute is called every 20 miliseconds
double rightJoyVal = Robot.oi.filter(Robot.oi.rightJoy.getY()); //Grab the Y value of the joystick and pass
double leftJoyVal = Robot.oi.filter(Robot.oi.leftloy.getY());; //it through the filter
Robot. tankDrive .move(leftJoyVal, rightJoyVal); //Then pass that double to the method "move" in tankDrive

}
19¢& @Override
220 protected boolean isFinished() { &
21 return false; //Don't stop running this command Where you place your command methods
22 }
3
24 }
25

Figure 3. Example Subsystem

[3] DriveTrainjava &2

1 package org.usfirst.frc.team4611.robot.subsystems;

2

3®import org.usfirst.frc.team4611.robot.RobotMap;

7

8 public class DriveTrain extends Subsystem { ‘— Says this class is going to be a subsystem
9

10 public void move(double left, double right) { //Grabs the left and right values that get passed by "TankDrive"

11 RobotMap.driveTrain.tankDrive(-left, -right); //Use those values for the method "tankDrive" which calls for joystick values
g2 }

13 . v\Create your own methods you want the subsystem to run

14= @Override
215 protected void initDefaultCommand() {

16 setDefaultCommand(new TankDrive()); //This subsystem will automatically run this command

17

18 } \ If you want the subsystem to “boot up” with a command already running do that here

19

Figure 4. Git Commands and Flow

Local

workspace staging epository

git add/mv/rm
git commit

git commit -a

git reset <file>

git reset <commit>

git diff
git diff HEAD

git clone/pull

Remote

repository

git push

git fetch

	Figure 1. Command Flow

